Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-501708

RESUMO

Neutralizing antibodies (NAbs) hold great promise for clinical interventions against SARS-CoV- 2 variants of concern (VOCs). Understanding NAb epitope-dependent antiviral mechanisms is crucial for developing vaccines and therapeutics against VOCs. Here we characterized two potent NAbs, EH3 and EH8, isolated from an unvaccinated pediatric patient with exceptional plasma neutralization activity. EH3 and EH8 cross-neutralize the early VOCs and mediate strong Fc-dependent effector activity in vitro. Structural analyses of EH3 and EH8 in complex with the receptor-binding domain (RBD) revealed the molecular determinants of the epitope-driven protection and VOC-evasion. While EH3 represents the prevalent IGHV3-53 NAb whose epitope substantially overlaps with the ACE2 binding site, EH8 recognizes a narrow epitope exposed in both RBD-up and RBD-down conformations. When tested in vivo, a single-dose prophylactic administration of EH3 fully protected stringent K18-hACE2 mice from lethal challenge with Delta VOC. Our study demonstrates that protective NAbs responses converge in pediatric and adult SARS-CoV-2 patients.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-496375

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent responsible for the ongoing global pandemic. With over 500 million cases and more than 6 million deaths reported globally, the need for access to effective vaccines is clear. An ideal SARS-CoV-2 vaccine will prevent pathology in the lungs and prevent virus replication in the upper respiratory tract, thus reducing transmission. Here, we assessed the efficacy of an adjuvanted SARS-CoV-2 S1 subunit vaccine, called COVAC-1, in an African green monkey (AGM) model. AGMs immunized and boosted with COVAC-1 were protected from SARS-CoV-2 challenge compared to unvaccinated controls based on reduced pathology and reduced viral RNA levels and infectious virus in the respiratory tract. Both neutralizing antibodies and antibodies capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) were observed in vaccinated animals prior to the challenge. COVAC-1 induced effective protection, including in the upper respiratory tract, thus supporting further development and utility for determining the mechanism that confers this protection. AUTHOR SUMMARYVaccines that can prevent the onward transmission of SARS-CoV-2 and prevent disease are highly desirable. Whether this can be accomplished without mucosal immunization by a parenterally administered subunit vaccine is not well established. Here we demonstrate that following two vaccinations, a protein subunit vaccine containing the S1 portion of the SARS-CoV-2 spike glycoprotein and the novel adjuvant TriAdj significantly reduces the amount of virus in the lungs and also mediates rapid clearance of the virus from the upper respiratory tract. Further support of the effectiveness of COVAC-1 was the observation of reduced pathology in the lungs and viral RNA being largely absent from tissues, blood, and rectal swabs. Thus COVAC-1 appears promising at mediating protection in both the upper and lower respiratory tract and may be capable of reducing subsequent transmission of SARS-CoV-2. Further investigation into the mechanism of protection in the upper respiratory tract and the initial immune response that supports this would be warranted.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-495677

RESUMO

COVID-19 convalescent plasmas (CCPs) are chosen for plasma therapy based on neutralizing titers and anti-Spike immunoglobulin levels. However, specific CCP characteristics that promote SARS-CoV-2 control in recipients are complex and incompletely defined. Using an in vivo imaging approach, we demonstrate that CCPs with low neutralizing and high Fc-effector activity, in contrast to those with poor Fc-function, afford effective prophylaxis and therapy in K18-hACE2 mice lethally challenged with SARS-CoV-2-nLuc. Macrophages and neutrophils significantly contributed to CCP effects during therapy but to a reduced extent under prophylaxis. Both IgG and Ig(M+A) were required during therapy, but the IgG fraction alone was sufficient during prophylaxis. Finally, despite neutralizing poorly, SARS-CoV-2 Wuhan-elicited CCPs delayed Delta and Beta variants of concern (VOC)-induced mortality in mice illustrating the contribution of polyclonal Fc-effector functions in immunity against VOCs. Thus, in addition to neutralization, Fc-effector activity is a significant criterion for CCP selection for therapeutic applications.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275056

RESUMO

While SARS-CoV-2 mRNA vaccination has been shown to be safe and effective in the general population, immunocompromised solid organ transplant recipients (SOTR) were reported to have impaired immune responses after one or two doses of vaccine. In this study, we examined humoral responses induced after the second and the third dose of mRNA vaccine in different SOTR (kidney, liver, lung and heart). Compared to a cohort of SARS-CoV-2 naive immunocompetent health care workers (HCW), the second dose induced weak humoral responses in SOTR, except for the liver recipients. The third dose boosted these responses but they did not reach the same level as in HCW. Interestingly, while the neutralizing activity against Delta and Omicron variants remained very low after the third dose, Fc-mediated effector functions in SOTR reached similar levels as in the HCW cohort. Whether these responses will suffice to protect SOTR from severe outcome remains to be determined.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275613

RESUMO

BackgroundPaediatric inflammatory multisystem syndrome (PIMS) is a rare but serious condition temporally associated with SARS-CoV-2 infection. Using the Canadian Paediatric Surveillance Program (CPSP), a national surveillance system, we aimed to 1) study the impact of SARS-CoV-2 linkage on clinical and laboratory characteristics, and outcomes in hospitalized children with PIMS across Canada 2) identify risk factors for ICU admission, and 3) establish the minimum national incidence of hospitalizations due to PIMS and compare it to acute COVID-19. MethodsWeekly online case reporting was distributed to the CPSP network of more than 2800 pediatricians, from March 2020 to May 2021. Comparisons were made between cases with respect to SARS-CoV-2 linkage. Multivariable modified Poisson regression was used to identify risk factors for ICU admission and Minimum incidence proportions were calculated. FindingsIn total, 406 PIMS cases were analyzed, of whom 202 (49{middle dot} 8%) had a positive SARS-CoV-2 linkage, 106 (26{middle dot} 1%) had a negative linkage, and 98 (24{middle dot} 1%) had an unknown linkage. The median age was 5{middle dot} 4 years (IQR 2{middle dot} 5-9{middle dot} 8), 60% were male, and 83% had no identified comorbidities. Compared to cases with a negative SARS-CoV-2 linkage, children with a positive SARS-CoV-2 linkage were older (8{middle dot} 1 years [IQR 4{middle dot} 2-11{middle dot} 9] vs. 4{middle dot} 1 years [IQR 1{middle dot} 7-7{middle dot} 7]; p<0{middle dot} 001), had more cardiac involvement (58{middle dot} 8% vs. 37{middle dot} 4%; p<0{middle dot} 001), gastrointestinal symptoms (88{middle dot} 6% vs. 63{middle dot} 2%; p<0{middle dot} 001), and shock (60{middle dot} 9% vs. 16{middle dot} 0%; p<0{middle dot} 001). At-risk groups for ICU admission include children [≥] 6 years and those with a positive SARS-CoV-2 linkage. No deaths were reported. The minimum incidence of PIMS hospitalizations during the study period was 5{middle dot} 6 hospitalizations per 100,000 population <18 years. InterpretationWhile PIMS is rare, almost 1 in 3 hospitalized children required ICU admission and respiratory/hemodynamic support, particularly those [≥] 6 years and with a positive SARS-CoV-2 linkage. FundingFinancial support for the CPSP was received from the Public Health Agency of Canada.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273967

RESUMO

Due to the recrudescence of SARS-CoV-2 infections worldwide, mainly caused by Omicron BA.1 and BA.2 variants of concern, several jurisdictions are administering a mRNA vaccine boost. Here, we analyzed humoral responses induced after the second and third doses of mRNA vaccine in naive and previously-infected donors who received their second dose with an extended 16-week interval. We observed that the extended interval elicited robust humoral responses against VOCs, but this response was significantly diminished 4 months after the second dose. Administering a boost to these individuals brought back the humoral responses to the same levels obtained after the extended second dose. Interestingly, we observed that administering a boost to individuals that initially received a short 3-4 weeks regimen elicited humoral responses similar to those elicited in the long interval regimen. Nevertheless, humoral responses elicited by the boost in naive individuals did not reach those present in previously-infected vaccinated individuals.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-486403

RESUMO

SARS-CoV-2 Spike glycoprotein is the major target of host neutralizing antibodies and the most changing viral protein in the continuously emerging SARS-CoV-2 variants as a result of frequent viral evasion from host antibody responses. In addition, SARS-CoV-2 encodes multiple accessory proteins that modulate host antiviral immunity by different mechanisms. Among all SARS-CoV-2 accessory proteins, ORF8 is rapidly evolving and a deletion in this protein has been linked to milder disease. Here, we studied the effect of ORF8 on peripheral blood mononuclear cells (PBMC). Specifically, we found that ORF8 can bind monocytes as well as NK cells. Strikingly, ORF8 binds CD16a (Fc{gamma}RIIIA) with nanomolar affinity and decreases the overall level of CD16 at the surface of monocytes and, to a lesser extent, NK cells. Strikingly, this decrease significantly reduces the capacity of PBMCs and particularly monocytes to mediate antibody-dependent cellular cytotoxicity (ADCC). Overall, our data identifies a new immune-evasion activity used by SARS-CoV-2 to escape humoral responses.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-481107

RESUMO

To infect cells, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) binds to angiotensin converting enzyme 2 (ACE2) via its spike glycoprotein (S), delivering its genome upon S-mediated membrane fusion. SARS-CoV-2 uses two distinct entry pathways: 1) a surface, serine protease-dependent or 2) an endosomal, cysteine protease-dependent pathway. In investigating serine protease-independent cell-cell fusion, we found that the matrix metalloproteinases (MMPs), MMP2/9, can activate SARS-CoV-2 S fusion activity, but not that of SARS-CoV-1. Importantly, metalloproteinase activation of SARS-CoV-2 S represents a third entry pathway in cells expressing high MMP levels. This route of entry required cleavage at the S1/S2 junction in viral producer cells and differential processing of variants of concern S dictated its usage. In addition, metalloproteinase inhibitors reduced replicative Alpha infection and abrogated syncytia formation. Finally, we found that the Omicron S exhibit reduced metalloproteinase-dependent fusion and viral entry. Taken together, we identified a MMP2/9-dependent mode of activation of SARS-CoV-2 S. As MMP2/9 are released during inflammation and severe COVID-19, they may play important roles in SARS-CoV-2 S-mediated cytopathic effects, tropism, and disease outcome.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-479007

RESUMO

SARS-CoV-2 infection of host cells starts by binding of the Spike glycoprotein (S) to the ACE2 receptor. The S-ACE2 interaction is a potential target for therapies against COVID-19 as demonstrated by the development of immunotherapies blocking this interaction. Here, we present the commercially available VE607, comprised of three stereoisomers, that was originally described as an inhibitor of SARS-CoV-1. We show that VE607 specifically inhibits infection of SARS-CoV-1 and SARS-CoV-2 S-expressing pseudoviral particles as well as authentic SARS-CoV-2. VE607 stabilizes the receptor binding domain (RBD) in its "up" conformation. In silico docking and mutational analysis map the VE607 binding site at the RBD-ACE2 interface. The IC50 values are in the low micromolar range for pseudoparticles derived from SARS-CoV-2 Wuhan/D614G as well as from variants of concern (Alpha, Beta, Gamma, Delta and Omicron), suggesting that VE607 has potential for the development of drugs against SARS-CoV-2 infections.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-473679

RESUMO

Continuous emergence of SARS-CoV-2 variants of concern (VOC) is fueling the COVID-19 pandemic. Omicron (B.1.1.529), is rapidly spreading worldwide. The large number of mutations in its Spike raised concerns about a major antigenic drift that could significantly decrease vaccine efficacy and infection-induced immunity. A long interval between BNT162b2 mRNA doses was shown to elicit antibodies that efficiently recognize Spikes from different VOCs. Here we evaluated the recognition of Omicron Spike by plasma from a cohort of SARS-CoV-2 naive and previously-infected individuals that received their BNT162b2 mRNA vaccine 16-weeks apart. Omicron Spike was recognized less efficiently than D614G, Alpha, Beta, Gamma and Delta Spikes. We compared to plasma activity from participants receiving a short (4-weeks) interval regimen. Plasma from individuals of the long interval cohort recognized and neutralized better the Omicron Spike compared to those that received a short interval. Whether this difference confers any clinical benefit against Omicron remains unknown.

11.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-473317

RESUMO

Spacing of the BNT162b2 mRNA doses beyond 3 weeks raised concerns about vaccine efficacy. We longitudinally analyzed B cell, T cell and humoral responses to two BNT162b2 mRNA doses administered 16 weeks apart in 53 SARS-CoV-2 naive and previously-infected donors. This regimen elicited robust RBD-specific B cell responses whose kinetics differed between cohorts, the second dose leading to increased magnitude in naive participants only. While boosting did not increase magnitude of CD4+ T cell responses further compared to the first dose, unsupervised clustering analyses of single-cell features revealed phenotypic and functional shifts over time and between cohorts. Integrated analysis showed longitudinal immune component-specific associations, with early Thelper responses post-first dose correlating with B cell responses after the second dose, and memory Thelper generated between doses correlating with CD8 T cell responses after boosting. Therefore, boosting elicits a robust cellular recall response after the 16-week interval, indicating functional immune memory.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-469776

RESUMO

Soluble Angiotensin-Converting Enzyme 2 (ACE2) constitutes an attractive antiviral capable of targeting a wide range of coronaviruses utilizing ACE2 as their receptor. Here, using structure-guided approaches, we developed divalent ACE2 molecules by grafting the extracellular ACE2-domain onto a human IgG1 or IgG3 (ACE2-Fc). These ACE2-Fcs harbor structurally validated mutations that enhance spike (S) binding and remove angiotensin enzymatic activity. The lead variant bound tightly to S, mediated in vitro neutralization of SARS-CoV-2 variants of concern (VOCs) with sub-nanomolar IC50 and was capable of robust Fc-effector functions, including antibody-dependent-cellular cytotoxicity, phagocytosis and complement deposition. When tested in a stringent K18-hACE2 mouse model, it delayed death or effectively resolved lethal SARS-CoV-2 infection in a prophylactic or therapeutic setting utilizing the combined effect of neutralization and Fc-effector functions. These data confirm the utility of ACE2-Fcs as valuable agents in preventing and eliminating SARS-CoV-2 infection and demonstrate that ACE2-Fc therapeutic activity require Fc-effector functions.

13.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-459408

RESUMO

Emerging evidence in animal models indicate that both neutralizing activity and Fc- mediated effector functions of neutralizing antibodies contribute to protection against SARS-CoV-2. It is unclear if antibody effector functions alone could protect against SARS-CoV-2. Here we isolated CV3-13, a non-neutralizing antibody from a convalescent individual with potent Fc-mediated effector functions that targeted the N- terminal domain (NTD) of SARS-CoV-2 Spike. The cryo-EM structure of CV3-13 in complex with SAR-CoV-2 spike revealed that the antibody bound from a distinct angle of approach to a novel NTD epitope that partially overlapped with a frequently mutated NTD supersite in SARS-CoV-2 variants. While CV3-13 did not alter the replication dynamics of SARS-CoV-2 in a K18-hACE2 transgenic mouse model, an Fc-enhanced CV3-13 significantly delayed neuroinvasion and death in prophylactic settings. Thus, we demonstrate that efficient Fc-mediated effector functions can contribute to the in vivo efficacy of anti-SARS-CoV-2 monoclonal antibodies in the absence of neutralization.

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263532

RESUMO

While the standard regimen of the BNT162b2 mRNA vaccine includes two doses administered three weeks apart, some public health authorities decided to space them, raising concerns about vaccine efficacy. Here, we analyzed longitudinal humoral responses including antibody binding, Fc-mediated effector functions and neutralizing activity against the D614G strain but also variants of concern and SARS-CoV-1 in a cohort of SARS-CoV-2 naive and previously infected individuals, with an interval of sixteen weeks between the two doses. While the administration of a second dose to previously infected individuals did not significantly improve humoral responses, we observed a significant increase of humoral responses in naive individuals after the 16-weeks delayed second shot, achieving similar levels as in previously infected individuals. We compared these responses to those elicited in individuals receiving a short (4-weeks) dose interval. For the naive donors, these responses were superior to those elicited by the short dose interval.

15.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253907

RESUMO

Despite advances in COVID-19 management, it is unclear how to recognize patients who evolve towards death. This would allow for better risk stratification and targeting for early interventions. However, the explosive increase in correlates of COVID-19 severity complicates biomarker prioritisation. To identify early biological predictors of mortality, we performed an immunovirological assessment (SARS-CoV-2 viral RNA, cytokines and tissue injury markers, antibody responses) on plasma samples collected from 144 hospitalised COVID-19 patients 11 days after symptom onset and used to test models predicting mortality within 60 days of symptom onset. In the discovery cohort (n=61, 13 fatalities), high SARS-CoV-2 vRNA, low RBD-specific IgG levels, low SARS-CoV-2-specific antibody-dependent cellular cytotoxicity, and elevated levels of several cytokines and lung injury markers were strongly associated with increased mortality in the entire cohort and the subgroup on mechanical ventilation. Model selection revealed that a three-variable model of vRNA, age and sex was very robust at identifying patients who will succumb to COVID-19 (AUC=0.86, adjusted HR for log-transformed vRNA=3.5; 95% CI: 2.0-6.0). This model remained robust in an independent validation cohort (n=83, AUC=0.85). Quantification of plasma SARS-CoV-2 RNA can help understand the heterogeneity of disease trajectories and identify patients who may benefit from new therapies.

16.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-436337

RESUMO

Neutralizing antibodies (NAbs) are effective in treating COVID-19 but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment in prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. We could visualize virus spread sequentially from the nasal cavity to the lungs and thereafter systemically to various organs including the brain, which culminated in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days. In addition to direct Fab-mediated neutralization, Fc effector interactions of NAbs with monocytes, neutrophils and natural killer cells were required to effectively dampen inflammatory responses and limit immunopathology. Our study highlights that both Fab and Fc effector functions of NAbs are essential for optimal in vivo efficacy against SARS-CoV-2.

17.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-435972

RESUMO

The standard dosing of the Pfizer/BioNTech BNT162b2 mRNA vaccine validated in clinical trials includes two doses administered three weeks apart. While the decision by some public health authorities to space the doses because of limiting supply has raised concerns about vaccine efficacy, data indicate that a single dose is up to 90% effective starting 14 days after its administration. We analyzed humoral and T cells responses three weeks after a single dose of this mRNA vaccine. Despite the proven efficacy of the vaccine at this time point, no neutralizing activity were elicited in SARS-CoV-2 naive individuals. However, we detected strong anti-receptor binding domain (RBD) and Spike antibodies with Fc-mediated effector functions and cellular responses dominated by the CD4+ T cell component. A single dose of this mRNA vaccine to individuals previously infected by SARS-CoV-2 boosted all humoral and T cell responses measured, with strong correlations between T helper and antibody immunity. Neutralizing responses were increased in both potency and breadth, with distinctive capacity to neutralize emerging variant strains. Our results highlight the importance of vaccinating uninfected and previously-infected individuals and shed new light into the potential role of Fc-mediated effector functions and T cell responses in vaccine efficacy. They also provide support to spacing the doses of two-vaccine regimens to vaccinate a larger pool of the population in the context of vaccine scarcity against SARS-CoV-2.

18.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250325

RESUMO

BackgroundSARS-CoV-2 surrogate neutralization assays that obviate the need for viral culture offer substantial advantages regarding throughput and cost. The cPass SARS-CoV-2 Neutralization Antibody Detection Kit (Genscript) is the first such commercially available assay, detecting antibodies that block RBD/ACE-2 interaction. We aimed to evaluate cPass to inform its use and assess its added value compared to anti-RBD ELISA assays. MethodsSerum reference panels comprising 205 specimens were used to compare cPass to plaque-reduction neutralization test (PRNT) and a pseudotyped lentiviral neutralization (PLV) assay for detection of neutralizing antibodies. We assessed the correlation of cPass with an ELISA detecting anti-RBD IgG, IgM, and IgA antibodies at a single timepoint and across intervals from onset of symptoms of SARS-CoV-2 infection. ResultsCompared to PRNT-50, cPass sensitivity ranged from 77% - 100% and specificity was 95% - 100%. Sensitivity was also high compared to the pseudotyped lentiviral neutralization assay (93% [95%CI 85-97]), but specificity was lower (58% [95%CI 48-67]). Highest agreement between cPass and ELISA was for anti-RBD IgG (r=0.823). Against the pseudotyped lentiviral neutralization assay, anti-RBD IgG sensitivity (99% [95%CI 94-100]) was very similar to that of cPass, but overall specificity was lower (37% [95%CI 28-47]). Against PRNT-50, results of cPass and anti-RBD IgG were nearly identical. ConclusionsThe added value of cPass compared to an IgG anti-RBD ELISA was modest.

19.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-428097

RESUMO

Functional and lasting immune responses to the novel coronavirus (SARS-CoV-2) are currently under intense investigation as antibody titers in plasma have been shown to decline during convalescence. Since the absence of antibodies does not equate to absence of immune memory, we sought to determine the presence of SARS-CoV-2-specific memory B cells in COVID-19 convalescent patients. In this study, we report on the evolution of the overall humoral immune responses on 101 blood samples obtained from 32 COVID-19 convalescent patients between 16 and 233 days post-symptom onset. Our observations indicate that anti-Spike and anti-RBD IgM in plasma decay rapidly, whereas the reduction of IgG is less prominent. Neutralizing activity in convalescent plasma declines rapidly compared to Fc-effector functions. Concomitantly, the frequencies of RBD-specific IgM+ B cells wane significantly when compared to RBD-specific IgG+ B cells, which increase over time, and the number of IgG+ memory B cells which remain stable thereafter for up to 8 months after symptoms onset. With the recent approval of highly effective vaccines for COVID-19, data on the persistence of immune responses are of central importance. Even though overall circulating SARS-CoV-2 Spike-specific antibodies contract over time during convalescence, we demonstrate that RBD-specific B cells increase and persist up to 8 months post symptom onset. We also observe modest increases in RBD-specific IgG+ memory B cells and importantly, detectable IgG and sustained Fc-effector activity in plasma over the 8-month period. Our results add to the current understanding of immune memory following SARS-CoV-2 infection, which is critical for the prevention of secondary infections, vaccine efficacy and herd immunity against COVID-19.

20.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-333278

RESUMO

Characterization of the humoral response to SARS-CoV-2, the etiological agent of Covid-19, is essential to help control the infection. In this regard, we and others recently reported that the neutralization activity of plasma from COVID-19 patients decreases rapidly during the first weeks after recovery. However, the specific role of each immunoglobulin isotype in the overall neutralizing capacity is still not well understood. In this study, we selected plasma from a cohort of Covid-19 convalescent patients and selectively depleted immunoglobulin A, M or G before testing the remaining neutralizing capacity of the depleted plasma. We found that depletion of immunoglobulin M was associated with the most substantial loss of virus neutralization, followed by immunoglobulin G. This observation may help design efficient antibody-based COVID-19 therapies and may also explain the increased susceptibility to SARS-CoV-2 of autoimmune patients receiving therapies that impair the production of IgM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...